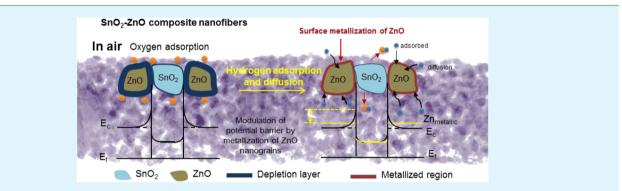
# Bifunctional Sensing Mechanism of SnO<sub>2</sub>–ZnO Composite Nanofibers for Drastically Enhancing the Sensing Behavior in H<sub>2</sub> Gas


Akash Katoch,<sup>†</sup> Jae-Hun Kim,<sup>†</sup> Yong Jung Kwon,<sup>‡</sup> Hyoun Woo Kim,<sup>\*,‡</sup> and Sang Sub Kim<sup>\*,†</sup>

<sup>†</sup>Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Incheon 402-751, Republic of Korea <sup>‡</sup>Division of Materials Science and Engineering, Hanyang University, 17 Haengdamg Dong, 222 Wangsimni-ro, Seoul 133-791, Republic of Korea

#### Supporting Information

ACS APPLIED MATERIALS

X INTERFACES



**ABSTRACT:**  $SnO_2-ZnO$  composite nanofibers fabricated using an electrospinning method exhibited exceptional hydrogen (H<sub>2</sub>) sensing behavior. The existence of tetragonal SnO<sub>2</sub> and hexagonal ZnO nanograins was confirmed by an analysis of the crystalline phase of the composite nanofibers. A bifunctional sensing mechanism of the composite nanofibers was proposed in which the combined effects of  $SnO_2-SnO_2$  homointerfaces and  $ZnO-SnO_2$  heterointerfaces contributed to an improvement in the H<sub>2</sub> sensing characteristics. The sensing process with respect to  $SnO_2-ZnO$  heterojunctions is associated not only with the high barrier at the junctions, but also the semiconductor-to-metallic transition on the surface of the ZnO nanograins upon the introduction of H<sub>2</sub> gas.

KEYWORDS: composite nanofibers, SnO<sub>2</sub>, ZnO, sensors, hydrogen

# 1. INTRODUCTION

In recent years, metal oxide nanofibers have attracted considerable interest for gas sensing applications because of their ease of fabrication, low processing cost, and, particularly, the presence of nanosized grains. The higher sensitivity with regard to the chemical sensors has been attributed to the behavior of grain boundaries formed at the interfaces of the nanograins, which exhibit a large change in resistance during adsorption and desorption of gas molecules.<sup>1,2</sup> Recent investigations have suggested that the microstructure of nanomaterials has a significant influence on gas sensing performance. Recently, the current authors reported that a ZnO fibrous structure was more favorable for detecting H<sub>2</sub> gas, in terms of employing the interesting hydrogen-induced metallization phenomenon in ZnO nanofibers, than were single crystalline nanowires.<sup>3</sup> The sensitivity to H<sub>2</sub> is enhanced by the formation of a large number of homojunctions among ZnO nanograins, exhibiting the semiconductor-to-metal conversion of their surfaces in the presence of H<sub>2</sub> molecules.<sup>3,4</sup>

This paper suggests that effective use of the above-mentioned metallization phenomenon toward the realization of high-performance  $H_2$  sensors is reinforced by heterojunctions consisting of ZnO and another material. In particular,

significant resistance modulation at the heterojunction provides a greater response during adsorption and desorption of H<sub>2</sub> gas molecules compared to that of their homojunction counterpart.<sup>5</sup> To date, several studies have observed enhanced sensor response from heterostructures, primarily due to the synergic effects of the two materials forming the heterojunctions.<sup>6,7</sup> After the selection of the most appropriate sensor material suitable for forming a heterojunction with ZnO, a sufficiently large difference in resistance is observed in the absence of H<sub>2</sub> gas in conjunction with an extremely low resistance upon exposure to H<sub>2</sub> gas.

Several metal oxide semiconductors, such as SnO<sub>2</sub>, TiO<sub>2</sub>, In<sub>2</sub>O<sub>3</sub>, and WO<sub>3</sub>, have potential as H<sub>2</sub> sensors. Among them, SnO<sub>2</sub> was chosen in this study for the following reasons. SnO<sub>2</sub> has a large bandgap of 3.56 eV at 300 K and a high carrier concentration of up to  $5.70 \times 10^{20}$  cm<sup>-3,8</sup> making it an excellent candidate for gas sensors. Furthermore, SnO<sub>2</sub> has been the dominant choice for domestic, commercial, and industrial settings due to the low operating temperatures.<sup>9</sup>

Received:February 27, 2015Accepted:May 7, 2015Published:May 7, 2015

**Research Article** 

www.acsami.org

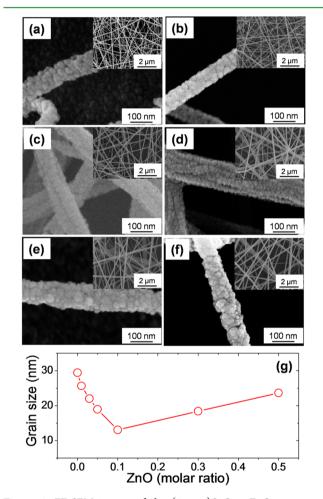
## **ACS Applied Materials & Interfaces**

Despite its excellent sensor response, the most serious disadvantage of the  $SnO_2$  sensor is its poor selectivity.<sup>10</sup> Accordingly, the present study attempted to circumvent this limitation by providing many ZnO-based heterostructures.

In this study,  $H_2$  sensing behavior was significantly enhanced through the use of  $SnO_2$ –ZnO heterostructures. Thus far,  $SnO_2$ –ZnO heterostructures have been used widely to detect various types of reducing and oxidizing gases.<sup>7,11</sup> The heterostructure was fabricated as one-dimensional nanofibers composed of nanosized ZnO and  $SnO_2$  grains. First, the adsorbed hydrogen generates a metallic thin layer on the boundaries of the ZnO nanograins, drastically enhancing the sensitivity and selectivity to  $H_2$  gas due to the  $SnO_2$ –ZnO heterointerfaces. Second, the  $SnO_2$  nanograins contribute to the sensing behavior through the formation of  $SnO_2$ –SnO<sub>2</sub> homointerfaces and  $SnO_2$ –ZnO heterointerfaces. Overall, this paper reports a bifunctional mechanism of  $H_2$  sensing in regard to  $SnO_2$ –ZnO composite nanofibers.

#### 2. EXPERIMENTAL DETAILS

**2.1. Materials.** Tin(II) chloride dihydrate (SnCl<sub>2</sub>·2H<sub>2</sub>O, Sigma-Aldrich Corp.), zinc acetate (Zn(OAc)<sub>2</sub>, Sigma-Aldrich Corp.), polyvinylpyrrolidone (PVP,  $M_w = 1\,300\,000$ , Sigma-Aldrich Corp.), poly(vinyl alcohol) (PVA,  $M_w = 80\,000$ , Sigma-Aldrich Corp.), ethanol (anhydrous, 99.5%, Sigma-Aldrich Corp.), dimethylformamide (DMF, anhydrous, 99.8%, Sigma-Aldrich Corp.), and deionized water were used as the precursor materials.


2.2. Synthesis of SnO<sub>2</sub>-ZnO Composite Nanofibers. The composition of the prepared electrospinning solution was xZnO-(1 x)SnO<sub>2</sub> (x = 0.01 - 0.50). In a typical process, 1.4 g of SnCl<sub>2</sub>·2H<sub>2</sub>O and 0.35 g of  $Zn(OAc)_2$  were dissolved in a mixed solvent consisting of DMF and ethanol at a 1:1 ratio with constant stirring for 1 h. Subsequently, 8 wt % of PVP was added to the Sn-Zn precursor solution and was stirred for 10 h. The prepared viscous solution was loaded into a syringe equipped with a 21-gauge stainless steel needle (inner diameter = 0.51 mm). The distance between the tip of the needle (15 kV) and the grounded collector was set to 20 cm. The solution was fed at 0.05 mL/h using an accurate syringe pump at room temperature in air. The as-spun nanofibers were produced on a SiO<sub>2</sub> layer-coated Si wafer placed on the collector region. The as-spun nanofibers were then calcined at 700 °C in air for 0.5 h at a heating rate of 0.5 °C/min. We obtained highly crystalline SnO2 and ZnO phases in composite nanofibers through calcination at 700 °C. Further, at this same temperature, complete removal of PVP and PVA polymer was observed. In addition,  ${\rm SnO}_2$  and ZnO nanofibers were also synthesized individually via the same electrospinning process using PVP and PVA polymers. The detailed procedure for the synthesis of  ${\rm SnO}_2$  and ZnO nanofibers is reported elsewhere.  $^{12,13}$  Both the  ${\rm SnO}_2$ and ZnO nanofibers were calcined under the same conditions used for the SnO<sub>2</sub>-ZnO composite nanofibers.

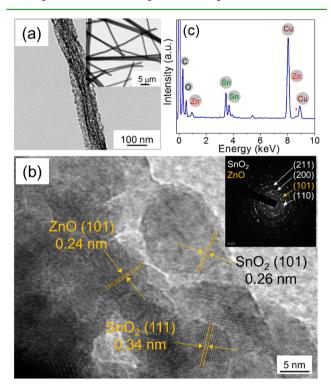
2.3. Microstructural Analysis and Sensing Measurements. The samples were analyzed by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4200), transmission electron microscopy (TEM, Philips CM-200) equipped with an energydispersive X-ray spectrometer (EDX), and X-ray diffraction (XRD, Philips X'pert MRD diffractometer). Furthermore, as electrodes for the sensing measurements, Au (thickness  $\sim$ 200 nm) and Ti (thickness  $\sim$ 50 nm) layers were sequentially sputter-deposited on the specimens using an interdigitated electrode mask similar to those reported previously.<sup>14–16</sup> The fabrication of sensor device is illustrated in Figure S1, Supporting Information. The response of the composite nanofiber sensors to H<sub>2</sub> was measured using a custom-made gas dilution and sensing system. In a typical experiment, a known amount of highly purified  $H_2$  (>99.999%) was introduced into the sensing chamber. The H<sub>2</sub> concentrations, which were obtained using N<sub>2</sub> gas as a diluting agent, were in the range 0.1-10 ppm. Dynamic resistance curves and corresponding sensor responses of the 0.90SnO<sub>2</sub>-0.10ZnO nanofiber

sensor were measured at different temperatures, as shown in Figure S2, Supporting Information. The sensor was most sensitive at 300 °C; accordingly, the operating temperature was optimized to 300 °C. The total gas flow rate was set to 500 sccm. Sensor response was used to evaluate the sensing capability, which is defined as  $R_a/R_g$ , where  $R_a$  is the initial resistance of the sensor (absence of H<sub>2</sub> gas), and  $R_g$  is the resistance of the sensor in the presence of H<sub>2</sub> gas. The response and recovery times were defined as the time taken for the resistance to change by 90% upon the introduction and removal of H<sub>2</sub> gas, respectively.<sup>17</sup>

## 3. RESULTS AND DISCUSSION

The microstructures of the  $SnO_2$ -ZnO composite nanofibers were observed using FE-SEM (Figure 1a-h). The insets show




**Figure 1.** FE-SEM images of the  $(1 - x)SnO_2-xZnO$  composite nanofibers with different ZnO contents: x = (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.10, (e) 0.30, and (f) 0.50. (g) Grain size of the different nanofibers analyzed in this study.

the low-magnification images, illustrating that the nanofibers were distributed randomly and uniformly over the substrate. Figure 1g summarizes the mean grain sizes of the  $SnO_2-ZnO$  composite nanofibers compared to those of the  $SnO_2$  nanofibers. Here, the mean grain size refers to the average of the composite nanofibers measured by SEM; thus, it is the average size of all grains in the nanofibers, in which  $SnO_2$  and ZnO grains cannot be distinguished from each other. The mean size of the nanograins in the  $SnO_2$ –ZnO composite nanofibers was significantly reduced by increasing the ZnO molar ratio from 0.01 to 0.1; however, further increases in the molar ratio

## **ACS Applied Materials & Interfaces**

from 0.30 to 0.50 increased the grain size. This suggests that the addition of ZnO affects the growth of the nanograins, leading to the observed decrease in grain size compared to the pure  $\text{SnO}_2$  nanofibers. On the other hand, the diameter of the composite nanofiber was not significantly affected by the addition of ZnO to  $\text{SnO}_2$ . The mean diameter of electrospunsynthesized nanofibers was estimated to be approximately 90 nm, irrespective of the ZnO content.

The microstructure of  $SnO_2$ -ZnO composite nanofibers was investigated further using TEM (Figure 2). The low-



**Figure 2.** (a) TEM image of a single  $0.9SnO_2-0.1ZnO$  nanofiber (inset: low-magnification TEM image). (b) Corresponding high-resolution TEM image. The inset shows a representative SAED pattern. (c) EDS spectrum of the  $0.9SnO_2-0.1ZnO$  nanofiber.

magnification TEM image in Figure 2a clearly shows the presence of smaller-sized nanograins in a single nanofiber; a typical nanofiber was selected from the sample shown in the upper-right inset of Figure 2a. This is in good agreement with the FE-SEM image shown in Figure 1d. The high-magnification TEM image of the composite nanofiber shown in Figure 2b reveals the coexistence of ZnO and SnO<sub>2</sub> nanocrystals. The interplanar distance of 0.24 nm, as determined from the highmagnification TEM image, corresponds to the (101) plane of hexagonal ZnO. In addition, the lattice spacings of 0.26 and 0.34 nm correspond to the (101) and (110) planes of tetragonal SnO<sub>2</sub>, respectively. The selected area diffraction pattern of the composite nanofibers, shown as an inset in the figure, clearly reveals the polycrystalline nature of the nanograins. The heterojunctions are formed at the interface between the SnO<sub>2</sub> and ZnO nanograins in the composite nanofibers. EDX element mapping (Figure 2c) confirmed the presence of Zn, Sn, and O in the composite nanofibers.

Furthermore, the crystalline phase of the  $SnO_2$ -ZnO composite nanofibers was examined using XRD (Figure 3). A set of peaks matching the tetragonal rutile structure of  $SnO_2$  were observed (JCPDS Card No. 88-0287). The XRD pattern

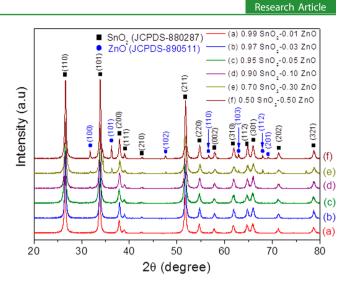



Figure 3. XRD patterns of  $SnO_2$ –ZnO composite nanofibers with different ZnO molar ratios.

of the  $SnO_2$ -ZnO composite nanofibers exhibited additional peaks related to the hexagonal structure of ZnO (JCPDS Card No. 88-0511). The existence of a ZnO phase confirms the presence of ZnO nanograins in the composite nanofibers. On the other hand, the intensity of the ZnO peaks was relatively low, indicating a relatively small amount of ZnO structure in the composite nanofibers. Further detailed analysis is shown in Figure S3 and Text S1, Supporting Information.

The sensing capabilities of the composite nanofibers were tested. Figure S4, Supporting Information, presents the dynamic resistance curves of the sensors at 300 °C. The H<sub>2</sub> gas concentrations were set to 0.1, 1, 5, and 10 ppm. The ZnO molar ratios were set to 0.01, 0.03, 0.05, 0.10, 0.30, and 0.50. The resistance decreased or increased with the introduction or removal of H<sub>2</sub>, respectively. The SnO<sub>2</sub>–ZnO composite nanofiber sensor showed significantly better H<sub>2</sub>-sensing behavior than that of the pure SnO<sub>2</sub> nanofibers, which could be attributed to the special interplay between ZnO and SnO<sub>2</sub>. Figure 4a,b presents the responses of all SnO<sub>2</sub>–ZnO composite nanofiber sensors. The corresponding response and recovery times are summarized in Table S1, Supporting Information, revealing no significant changes in these times with varying gas concentrations.

According to a previous study,<sup>3</sup> ZnO nanofibers are more sensitive to  $H_2$  than are  $SnO_2$  nanofibers. The dynamic resistance curves and sensor responses of the composite nanofibers were compared of those of pure  $SnO_2$  and ZnO nanofibers (Figure 4c,d). For example, at 10 ppm, the sensor responses of pure ZnO nanofibers, pure  $SnO_2$  nanofibers, and 0.90SnO<sub>2</sub>-0.10ZnO composite nanofibers were 63.8, 4.2, and 168.6, respectively. At  $H_2$  concentrations in the range 0.1–10 ppm, the pure  $SnO_2$  nanofibers exhibited the lowest sensitivity, whereas the 0.90SnO<sub>2</sub>-0.10ZnO composite nanofiber sensor exhibited the highest response among all the sensors; however, a further increase in the ZnO molar ratio to 0.30 and 0.50 gradually decreased the response. Figure 4e shows the responses of the  $SnO_2$ -ZnO composite nanofiber sensors to 0.1 ppm of  $H_2$  according to the ZnO molar ratio.

The sensing response was significantly improved by the addition of ZnO nanograins to the  $SnO_2$  nanofibers. The composite nanofiber sensors with a ZnO molar ratio of 0.10 showed the highest response, indicating that the ZnO content

11353

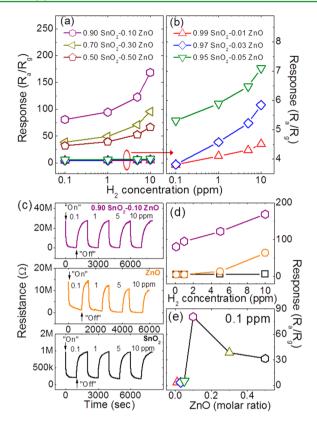



Figure 4. (a, b) Summary of the sensor responses of  $SnO_2-ZnO$  composite nanofibers. (c) Dynamic resistance curves of pure ZnO, pure  $SnO_2$ , and  $SnO_2-ZnO$  composite nanofibers for 0.1–10 ppm of H<sub>2</sub>. (d) Variations of the sensor responses of the pure ZnO, pure  $SnO_2$ , and  $SnO_2-ZnO$  composite nanofibers with varying H<sub>2</sub> concentrations. (e) Sensor responses of the  $SnO_2-ZnO$  composite nanofibers to 0.1 ppm of H<sub>2</sub> according to the ZnO content.

should be optimized to obtain the best  $H_2$ -sensing properties in  $SnO_2$ -ZnO composite nanofiber sensors. Furthermore, the sensitivity of the composite sensor to  $H_2$  was compared with those of the other gases, including CO, benzene, and toluene, all at concentrations of 10 ppm. Figure 5a shows the corresponding normalized resistance curves. As is evident, the  $SnO_2$ -ZnO composite nanofibers showed the strongest response to  $H_2$  compared to its response to other gases. Figure

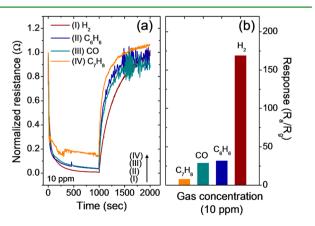



Figure 5. (a) Normalized dynamic resistance curves and (b) responses of the 0.9SnO<sub>2</sub>-0.1ZnO nanofibers to 10 ppm of various reducing gases at 300 °C.

5b shows the corresponding bar graph comparing the sensor responses of the composite nanofibers to the four gases.

A bifunctional sensing mechanism is proposed to explain the improved sensing behavior of SnO<sub>2</sub>-ZnO composite nanofibers to H<sub>2</sub> gas. The bifunctional sensing mechanism included the following: (1) reducing the gas effect between the neighboring  $SnO_2$  nanograins and (2) a metallization effect between the ZnO and SnO<sub>2</sub> nanograins. The first mechanism  $(m_1)$  corresponds to a grain-boundary-dependent phenomenon exhibited by SnO<sub>2</sub> homojunctions, as shown in Figure 6a. Being similar to the pure SnO<sub>2</sub> nanofibers, many SnO<sub>2</sub> homojunctions exist between two adjacent nanograins in the composite nanofibers. In air, oxygen molecules diffuse through the nanograins and completely cover the grain boundaries. The oxygen molecules adsorbed on the surfaces of the SnO<sub>2</sub> nanograins extract electrons from the nanograins and form potential barriers between the adjacent nanograins, which restrict the flow of electrons through the nanograins. During H<sub>2</sub> exposure, the H<sub>2</sub> molecules interact with chemisorbed oxygen species and release electrons with the concomitant generation of H<sub>2</sub>O. The electrons released back to the SnO<sub>2</sub> nanograins reduce the height of the potential barrier established at the grain boundary, resulting in resistance modulation at the  $SnO_2$ - $SnO_2$  homojunctions.

On the other hand, in the case of SnO<sub>2</sub>-ZnO composite nanofibers, some potential barriers are generated between the neighboring SnO<sub>2</sub> and ZnO nanograins. Note that the addition of ZnO to SnO<sub>2</sub> nanofibers reduced the grain size (Figure 1). These smaller nanograins also contribute to sensor enhancement because the area of the grain boundaries is increased. The grain size of the pure nanofibers is decreased by approximately 55% upon the addition of ZnO in order to prepare the 0.90SnO<sub>2</sub>-0.10ZnO composite nanofiber. On the other hand, at 10 ppm, the corresponding sensor response was increased from 4.2 to 168. Accordingly, the decrease in grain size cannot account for the drastic sensor enhancement observed in the present work. The second mechanism  $(m_2)$  of the ZnO-SnO<sub>2</sub> heterojunctions contributes to the enhanced sensor response (Figure 6b). Figure S5, Supporting Information, shows the energy band diagram of the heterojunction formed at the boundaries between the SnO<sub>2</sub> and ZnO nanograins.<sup>18</sup> When an n-SnO<sub>2</sub> nanograin comes into contact with an n-ZnO nanograin, the difference in electron workfunction results in the unidirectional flow of electrons, ultimately equating the Fermi levels of the two materials. This results in bending of the energy band and vacuum energy level at the ZnO/SnO<sub>2</sub> interfaces. The heterojunction enhances the sensing abilities by promoting the modulation of resistance (or electron concentration).<sup>7,12,15,16,19</sup> Several researchers have fabricated a range of sensors based on ZnO-SnO2 composites. For example, sensors composed of ZnO nanorods modified with SnO<sub>2</sub> nanoparticles<sup>20</sup> and SnO<sub>2</sub>-ZnO hybrid nanofibers<sup>11</sup> were shown to exhibit a strong response to NO2 gas. This was explained on the basis of charge transfer at the  $ZnO/SnO_2$  interfaces.<sup>11,20</sup> Similarly, the sensors fabricated with mesoporous ZnO-SnO2 nanofibers were found to be sensitive to ethanol gas.<sup>7</sup> This was explained by considering the surface depletion effect at the heterointerface.<sup>7</sup> Moreover, the sensing characteristics also depend on the nature of the chemical species and their interactions with oxide materials. For example, it was reported that the mechanism underlying the sensing characteristics of SnO<sub>2</sub>-ZnO composites to ethanol gas is closely related to the decomposition and oxidation of ethanol

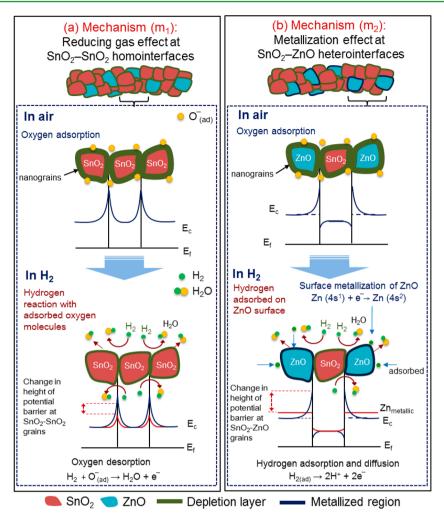



Figure 6. Schematic diagram of the proposed bifunctional sensing mechanism, explaining the enhanced sensitivity of the  $SnO_2$ -ZnO composite nanofibers to  $H_2$ . (a) Mechanism ( $m_1$ ): reducing gas effect at  $SnO_2$ -SnO<sub>2</sub> homointerfaces. (b) Mechanism ( $m_2$ ): metallization effect at  $SnO_2$ -ZnO heterointerfaces.

with the acid–base catalytic properties of  $\text{SnO}_2$  and  $\text{ZnO}.^{21,22}$  Ethanol undergoes different reactions depending on the material properties of the surface (i.e., ZnO or  $\text{SnO}_2$ ).

The second mechanism  $(m_2)$  proposed in this study mainly involves the additional modulation of resistance between the neighboring ZnO and SnO<sub>2</sub> nanograins, resulting from the surface metallization of ZnO grains in the presence of H<sub>2</sub> (Figure 6b). According to previous experimental and theoretical studies, metallization of the ZnO surface occurs by the adsorption of hydrogen atoms on the O sites of the nonpolar surfaces of ZnO.<sup>23,24</sup> Recently, the surface metallization of ZnO nanofibers in the presence of H<sub>2</sub> molecules was examined using XPS,<sup>3</sup> which can be applied to the present case of composite nanofibers. According to XPS, the inferred spinorbit splitting for  $Zn^{2+} = 23.0$  eV changed to  $Zn^0 = 23.1$  eV. In addition, the Zn 2p features shifted to a lower binding energy upon exposure to H<sub>2</sub>, confirming the metallization of the ZnO surface.<sup>25-30</sup> The reason for the metallization of the ZnO surface can be understood in terms of the interaction of H<sub>2</sub> with the lattice oxygen of ZnO. Strong hybridization occurs between the s-orbitals of H and the p-orbitals of O, where the O-p energy states located at the Fermi level shifted to a lower energy. Because of the strong hybridization between the H-s and O-p orbitals, charge delocalization occurs between Zn and the O-H bond and partially occupies the 4s and 3d states of the surface Zn atoms.<sup>25</sup> This charge delocalization metallizes the surface Zn atoms, where the 4s and 3d states of Zn contribute to the electrical conduction.

Accordingly, upon exposure to H<sub>2</sub> gas, a semiconductor-tometallic transformation of the ZnO surface occurs. The heterojunction between ZnO and SnO<sub>2</sub> is destroyed because of the semiconductor (ZnO)-to-metallic (Zn) transition of the ZnO surface and the accelerated electron transport from the metallic Zn ( $\varphi_{\rm (Zn)}$  = 4.3 eV) surface to SnO<sub>2</sub>. This reduces the overall resistance of the sensor. When H<sub>2</sub> gas is removed and air is supplied, the metal Zn recovers to ZnO, thereby reestablishing the original band configuration. This semiconductor-to-metallic surface transition in ZnO significantly increases the modulation of resistance.

The highest response was obtained from composite nanofibers with the molar ratio of Sn to Zn at 9:1. The additional modulation of resistance in composite nanofibers results from the transition of semiconductor  $(SnO_2)$ -semiconductor (ZnO) heterojunction to semiconductor  $(SnO_2)$ -metal (Zn)in the presence of H<sub>2</sub>. When the content of ZnO exceeds the critical amount, some ZnO nanograins will be in contact, in which electrons will pass through metallic-metallic (Zn)contact formed between boundaries of two adjacent ZnO grains, lowering the modulation of resistance. On the other hand, when the ZnO content is lower than its critical amount,

| Table 1. | Gas | Sensing | Abilities | of | SnO <sub>2</sub> -7 | ZnO | Composite | Materials |
|----------|-----|---------|-----------|----|---------------------|-----|-----------|-----------|
|          |     |         |           |    |                     |     |           |           |

| nanostructure type                                             | gas             | gas conc (ppm) | $T(^{\circ}C)$ | response $(R_a/R_g \text{ or } R_g/R_a)$ | ref          |
|----------------------------------------------------------------|-----------------|----------------|----------------|------------------------------------------|--------------|
| ZnO-SnO <sub>2</sub> nanocomposites                            | NO <sub>2</sub> | 500            | 250            | 34.5                                     | 31           |
| SnO <sub>2</sub> -ZnO core-shell nanofibers                    | O <sub>2</sub>  | 70             | 300            | 1.2                                      | 32           |
|                                                                | NO <sub>2</sub> | 5              | 300            | 1.4                                      | 32           |
| SnO <sub>2</sub> -ZnO composite nanofibers                     | NO <sub>2</sub> | 4              | 200            | 105                                      | 33           |
| ZnO-SnO <sub>2</sub> core-shell nanowires                      | NO <sub>2</sub> | 10             | 200            | 66.3                                     | 34           |
|                                                                | ethanol         | 200            | 400            | 280                                      | 34           |
| SnO <sub>2</sub> -ZnO composite thin films                     | ethanol         | 200            | 300            | 4.69                                     | 35           |
| mesoporous SnO <sub>2</sub> -ZnO composite nanofibers          | ethanol         | 50             | 300            | 12.8                                     | 36           |
| ZnO-branched SnO <sub>2</sub> nanowires                        | ethanol         | 100            | 400            | 6.2                                      | 37           |
| ZnO-doped SnO <sub>2</sub> nanoparticles                       | ethanol         | 300            | 250            | 3900                                     | 38           |
|                                                                | СО              | 500            | 200            | 1020                                     | 38           |
| ZnO-SnO <sub>2</sub> composites                                | СО              | 200            | 350            | 12                                       | 39           |
| hollow hierarchical SnO <sub>2</sub> –ZnO composite nanofibers | methanol        | 10             | 350            | 8.7                                      | 40           |
| SnO <sub>2</sub> nanoparticles doped with ZnO microrods        | trimethylamine  | 50             | 330            | 125                                      | 41           |
| SnO <sub>2</sub> -coated ZnO nanorods                          | H <sub>2</sub>  | 500            | 400            | 1.7                                      | 42           |
| ZnO-coated SnO <sub>2</sub> nanorods                           | $H_2$           | 100            | 350            | 18.4                                     | 43           |
| ZnO-SnO <sub>2</sub> composite films                           | H <sub>2</sub>  | 10 000         | 150            | 1.9                                      | 44           |
| SnO <sub>2</sub> -ZnO composite nanofibers                     | $H_2$           | 10             | 300            | 168.6                                    | present work |

the number of  $SnO_2$ -ZnO heterojunction will be insufficient. Subsequently, the metallization effect will be decreased.

To date, a variety of SnO<sub>2</sub>-ZnO composite materials have been developed to detect various gases (Table  $1^{31-44}$ ). Although several researchers have reported a very high response at a gas concentration higher than 100 ppm, it is not common to fabricate sensors operating at a low concentration of 10 ppm or below. For  $NO_2$  gas, the sensors fabricated from SnO<sub>2</sub>–ZnO composite nanofibers,<sup>33</sup> SnO<sub>2</sub>–ZnO core–shell nanofibers,<sup>32</sup> and ZnO-SnO<sub>2</sub> core–shell nanowires<sup>34</sup> exhibited sensor responses of 105 (4 ppm), 1.4 (5 ppm), and 66.3 (10 ppm), respectively. Recently, Tang et al. obtained a methanol gas sensor response of 8.7 at 10 ppm using the hollow hierarchical SnO<sub>2</sub>-ZnO composite nanofibers.<sup>4</sup> Furthermore, a few studies have reported H<sub>2</sub> sensor behavior of SnO<sub>2</sub>-ZnO composite materials. The SnO<sub>2</sub>-coated ZnO nanorods exhibited a sensor response of 1.7 at 500 ppm,<sup>42</sup> whereas the ZnO-coated SnO<sub>2</sub> nanorods exhibited a sensor response of 18.4 at 100 ppm.<sup>43</sup> Mondal et al. obtained a H<sub>2</sub> gas sensor response of 1.9 at 10 000 ppm using ZnO-SnO<sub>2</sub> composite films.44 Although Zn nanopillars exhibited a high sensor response of 70 at a H<sub>2</sub> concentration of 2500 ppm,<sup>4</sup> most ZnO nanostructures showed sensor responses lower than 10 (Table 1 in ref 3). In comparison, ZnO nanofibers exhibited a much larger response of 109.1 at a low concentration of 10 ppm.<sup>3</sup> Thus, the large number of homojunctions between nanograins in the nanofiber structure will contribute to the significant enhancement in sensor behavior. On the other hand, pure SnO<sub>2</sub> nanofibers showed no noticeable H<sub>2</sub> sensitivity at 10 ppm.3 The SnO<sub>2</sub> nanoparticle-based thin films exhibited a very high sensor response ( $\sim$ 660) at 800 ppm of H<sub>2</sub>.<sup>46</sup> However, there have been few reports on SnO<sub>2</sub>-based H<sub>2</sub> sensors with a high sensitivity at low concentration. Accordingly, the response of 168.6 for 10 ppm of H<sub>2</sub> gas obtained by the present work is superior to previous ones by the SnO2-ZnO composite materials, paving the way to the development of lowconcentration gas sensors.

### 4. CONCLUSIONS

 $SnO_2$ -ZnO composite nanofibers were fabricated using an electrospinning technique, and their sensing capabilities for H<sub>2</sub>

gas were investigated. XRD and TEM showed that the composite nanofibers consisted of tetragonal  $SnO_2$  and hexagonal ZnO nanograins. The composite nanofiber sensor showed better sensing selectivity to  $H_2$  gas than did their pure components. This paper proposed that the bifunctional sensing mechanism of the composite nanofibers is responsible for the improved sensor response to  $H_2$ , in which the reducing gas effect between the  $SnO_2$  nanograins and the metallization effect between the ZnO and  $SnO_2$  nanograins play an important role in enhancing the  $H_2$ -sensing behavior.

### ASSOCIATED CONTENT

### **S** Supporting Information

Dynamic resistance curves, sensor responses, and XRD patterns of the  $SnO_2$ –ZnO composite nanofibers; schematic illustration of the fabrication of sensor device; energy band diagram of  $SnO_2$ –ZnO; and a table showing the response and recovery times of the  $SnO_2$ –ZnO composite nanofibers. Text discussing on the possible presence of solid solution. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b01817.

#### AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: hyounwoo@hanyang.ac.kr. \*E-mail: sangsub@inha.ac.kr.

#### **Author Contributions**

S.S.K. and H.W.K. conceived the study, designed the experiments, and prepared the manuscript. A.K., Y.J.K., and J.-H.K. performed the experiments. All authors approved the final version of the paper.

#### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of Korea (2012R1A2A2A01013899) and the International Research & Development Program of NRF funded by MEST (2013K1A3A1A21000149).

## REFERENCES

(1) Modafferi, V.; Panzera, G.; Donato, A.; Antonucci, P. L.; Cannilla, C.; Donato, N.; Spadaro, D.; Neri, G. Highly Sensitive Ammonia Resistive Sensor Based on Electrospun  $V_2O_5$  Fibers. *Sens. Actuators, B* **2012**, *163*, 61–68.

(2) Liu, Y.; Ding, Y.; Zhang, L.; Gao, P.-X.; Lei, Y.  $CeO_2$  Nanofibers for In Situ  $O_2$  and CO Sensing in Harsh Environments. *RSC Adv.* **2012**, *2*, 5193–5198.

(3) Katoch, A.; Choi, S.-W.; Kim, H. W.; Kim, S. S. Highly Sensitive and Selective  $H_2$  Sensing by ZnO Nanofibers and the Underlying Sensing Mechanism. *J. Hazard. Mater.* **2015**, 286, 229–235.

(4) Khan, R.; Ra, H. W.; Kim, J. T.; Jang, W. S.; Sharma, D.; Im, Y. H. Nanojunction Effects in Multiple ZnO Nanowire Gas Sensor. *Sens. Actuators, B* **2010**, *150*, 389–393.

(5) Choi, S.-W.; Zhang, J.; Akash, K.; Kim, S. S. H<sub>2</sub>S Sensing Performance of Electrospun CuO-Loaded SnO<sub>2</sub> Nanofibers. *Sens. Actuators, B* **2012**, *169*, 54–60.

(6) Wang, W.; Li, Z.; Zheng, W.; Huang, H.; Wang, C.; Sun, J. Cr<sub>2</sub>O<sub>3</sub>-Sensitized ZnO Electrospun Nanofibers Based Ethanol Detectors. *Sens. Actuators, B* **2010**, *143*, 754–758.

(7) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. A Highly Sensitive Ethanol Sensor Based on Mesoporous ZnO-SnO<sub>2</sub> Nanofibers. *Nanotechnology* **2009**, *20*, 075501.

(8) Fujisawa, A.; Nishino, T.; Hamakawa, Y. Hall-Effect Measurement on Polycrystalline SnO<sub>2</sub> Thin Films. *Jpn. J. Appl. Phys.* **1998**, *27*, 552–555.

(9) Jimenez, V. M.; Gonzalez-Elipe, A. R.; Espinos, J. P.; Justo, A.; Fernandez, A. Synthesis of SnO and SnO<sub>2</sub> Nanocrystalline Powders by the Gas Phase Condensation Method. *Sens. Actuator, B* **1996**, *31*, 29–32.

(10) Shirahata, N.; Shin, W.; Murayama, N.; Hozumi, A.; Yokogawa, Y.; Kameyama, T.; Masuda, Y.; Koumoto, K. Reliable Monolayer-Template Patterning of SnO<sub>2</sub> Thin Films from Aqueous Solution and Their Hydrogen-Sensing Properties. *Adv. Funct. Mater.* **2004**, *14*, 580– 588.

(11) Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Chu, H. Y.; Zyung, T. SnO<sub>2</sub>-ZnO Hybrid Nanofibers-Based Highly Sensitive Nitrogen Dioxides Sensor. *Sens. Actuators, B* **2010**, *145*, 592–595.

(12) Park, J. Y.; Kim, S. S. Growth of Nanograins in Electrospun ZnO Nanofibers. J. Am. Ceram. Soc. 2009, 92, 1691–1694.

(13) Viter, R.; Katoch, A.; Kim, S. S. Grain Size Dependent Bandgap Shift of SnO<sub>2</sub> Nanofibers. *Met. Mater. Int.* **2014**, *20*, 163–167.

(14) Kim, H. W.; Shim, S. H.; Lee, J. W.; Park, J. Y.; Kim, S. S.  $Bi_2Sn_2O_7$  Nanoparticles Attached to  $SnO_2$  Nanowires and Used as Catalysts. *Chem. Phys. Lett.* **2008**, 456, 193–197.

(15) Choi, S.-W.; Katoch, A.; Zhang, J.; Kim, S. S. Electrospun Nanofibers of CuO-SnO<sub>2</sub> Nanocomposite as Semiconductor Gas Sensors for  $H_2S$  Detection. *Sens. Actuators, B* **2013**, *176*, 585–591.

(16) Katoch, A.; Choi, S.-W.; Sun, G.-J.; Kim, S. S. An Approach to Detecting a Reducing Gas by Radial Modulation of Electron-Depleted Shells in Core-Shell Nanofibers. *J. Mater. Chem. A* **2013**, *1*, 13588–13596.

(17) Kwon, Y. J.; Cho, H. Y.; Na, H. G.; Lee, B. C.; Kim, S. S.; Kim, H. W. Improvement of Gas Sensing Behavior in Reduced Graphene Oxides by Electron-Beam Irradiation. *Sens. Actuators, B* **2014**, *203*, 143–149.

(18) Park, J. Y.; Choi, S.-W.; Kim, S. S. A Model for the Enhancement of Gas Sensing Properties in  $SnO_2$ -ZnO Core-Shell Nanofibers. J. Phys. D: Appl. Phys. **2011**, 44, 205403.

(19) Singh, N.; Ponzoni, A.; Gupta, R. K.; Lee, P. S.; Comini, E. Synthesis of  $In_2O_3$ -ZnO Core-Shell Nanowires and Their Application in Gas Sensing. *Sens. Actuators, B* **2011**, *160*, 1346–1351.

(20) Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y.; Liu, F. UV-Enhanced Room Temperature NO<sub>2</sub> Sensor Using ZnO Nanorods Modified with SnO<sub>2</sub> Nanoparticles. *Sens. Actuators, B* **2012**, *162*, 82–88.

(21) Jinkawa, T.; Sakai, G.; Tamaki, J.; Miura, N.; Yamazoe, N. Relationship between Ethanol Gas Sensitivity and Surface Catalytic Property of Tin Oxide Sensors Modified with Acidic or Basic Oxides. *J. Mol. Catal. A: Chem.* **2000**, *155*, 193–200.

(22) Kim, K.-W.; Cho, P.-S.; Kim, S.-J.; Lee, J.-H.; Kang, C.-Y.; Kim, J.-S.; Yoon, S.-J. The Selective Detection of  $C_2H_5OH$  Using SnO<sub>2</sub>-ZnO Thin Film Gas Sensors Prepared by Combinatorial Solution Deposition. *Sens. Actuators, B* **2007**, *123*, 318–324.

(23) Wang, Y.; Meyer, B.; Yin, X.; Kunat, M.; Langenberg, D.; Traeger, F.; Birkner, A.; Wöll, C. Hydrogen Induced Metallicity on the ZnO(1010) Surface. *Phys. Rev. Lett.* **2005**, *95*, 266104.

(24) Wang, C.; Zhou, G.; Li, J.; Yan, B.; Duan, W. Hydrogen-Induced Metallization of Zinc Oxide (2110) Surface and Nanowires: The Effect of Curvature. *Phys. Rev. B* 2008, *77*, 245303.

(25) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. *Handbook of X-Ray Photoelectron Spectroscopy*; Perkin-Elmer: Eden Prairie, MN, 1979.

(26) NIST X-ray Photoelectron Spectroscopy Database; National Institute of Standards and Technology: Gaithersburg, MD. http://srdata.nist.gov/xps/.

(27) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed., Perkin-Elmer: New York, 1992.

(28) Slam, M. N.; Ghosh, T. B.; Chopra, K. L.; Acharya, H. N. XPS and X-ray Diffraction Studies of Aluminum-Doped Zinc Oxide Transparent Conducting Films. *Thin Solid Films* **1996**, *280*, 20–25.

(29) Pandey, S. K.; Pandey, S. K.; Deshpande, U. P.; Awasthi, V.; Kumar, A.; Gupta, M.; Mukherjee, S. Effect of Oxygen Partial Pressure on The Behavior of Dual Ion Beam Sputtered ZnO Thin Films. *Semicond. Sci. Technol.* **2013**, *28*, 085014.

(30) Bie, L.-J.; Yan, X.-N.; Yin, J.; Duan, Y.-Q.; Yuan, Z.-H. Nanopillar ZnO Gas Sensor for Hydrogen and Ethanol. *Sens. Actuators, B* **2007**, *126*, 604–608.

(31) Liangyuan, C.; Shouli, B.; Guojun, Z.; Dianqing, L.; Aifan, C.; Liu, C. C. Synthesis of ZnO-SnO<sub>2</sub> Nanocomposites by Microemulsion and Sensing Properties for NO<sub>2</sub>. *Sens. Actuators, B* **2008**, *134*, 360– 366.

(32) Choi, S.-W.; Park, J. Y.; Kim, S. S. Synthesis of  $SnO_2$ -ZnO Core-Shell Nanofibers via a Novel Two-Step Process and Their Gas Sensing Properties. *Nanotechnology* **2009**, *20*, 465603.

(33) Park, J.-A.; Moon, J.; Lee, S.-J.; Kim, S. H.; Chu, H. Y.; Zyung, T. SnO<sub>2</sub>-ZnO Hybrid Nanofibers-Based Highly Sensitive Nitrogen Dioxides Sensor. *Sens. Actuators, B* **2010**, *145*, 592–595.

(34) Hwang, I.-S.; Kim, S.-J.; Choi, J.-K.; Choi, J.; Ji, H.; Kim, G.-T.; Cao, G.; Lee, J.-H. Synthesis and Gas Sensing Characteristics of Highly Crystalline ZnO-SnO<sub>2</sub> Core-Shell Nanowires. *Sens. Actuators, B* **2010**, *148*, 595–600.

(35) Kim, K.-W.; Cho, P.-S.; Kim, S.-J.; Lee, J.-H.; Kang, C.-Y.; Kim, J.-S.; Yoon, S.-J. The Selective Detection of  $C_2H_5OH$  Using SnO<sub>2</sub>-ZnO Thin Film Gas Sensors Prepared by Combinational Solution Deposition. *Sens. Actuators, B* **2007**, *123*, 318–324.

(36) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. A Highly Sensitive Ethanol Sensor Based on Mesoporous ZnO-SnO<sub>2</sub> Nanofibers. *Nanotechnology* **2009**, *20*, 075501.

(37) Khoang, N. D.; Trung, D. D.; Duy, N. V.; Hoa, N. D.; Hieu, N. V. Design of SnO<sub>2</sub>/ZnO Hierarchical Nanostructures for Enhanced Ethanol Gas-Sensing Performance. *Sens. Actuators, B* **2012**, *174*, 594–601.

(38) Hemmati, S.; Firooz, A. A.; Khodadadi, A. A.; Mortazavi, Y. Nanostructured SnO<sub>2</sub>-ZnO Sensors: Highly Sensitive and Selective to Ethanol. *Sens. Actuators, B* **2011**, *160*, 1298–1303.

(39) Yu, J. H.; Choi, G. M. Electrical and CO Gas Sensing Properties of ZnO-SnO<sub>2</sub> Composites. *Sens. Actuators, B* **1998**, *52*, 251–256.

(40) Tang, W.; Wang, J.; Yao, P.; Li, X. Hollow Hierarchical SnO<sub>2</sub>-ZnO Composite Nanofibers with Heterostructure Based on Electrospinning Method for Detecting Methanol. *Sens. Actuators, B* **2014**, *192*, 543–549.

# **ACS Applied Materials & Interfaces**

(41) Zhang, W.-H.; Zhang, W.-D. Fabrication of  $SnO_2$ -ZnO Nanocomposite Sensor for Selective Sensing of Trimethylamine and Freshness of Fishes. *Sens. Actuators, B* **2008**, *134*, 403–408.

(42) Tien, L. C.; Norton, D. P.; Gila, B. P.; Pearton, S. J.; Wang, H.-T.; Kang, B. S.; Ren, F. Detection of Hydrogen with SnO<sub>2</sub>-Coated ZnO Nanorods. *Appl. Surf. Sci.* **2007**, *253*, 4748–4752.

(43) Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-Temperature Growth of  $SnO_2$  Nanorod Arrays and Tunable n-p-n Sensing Response of a  $ZnO/SnO_2$  Heterojunctions for Exclusive Hydrogen Sensors. *Adv. Funct. Mater.* **2011**, *21*, 2680–2686.

(44) Mondal, B.; Basumatari, B.; Das, J.; Roychaudhury, C.; Saha, H.; Mukherjee, N. ZnO-SnO<sub>2</sub> Based Composite Type Gas Sensor for Selective Hydrogen Sensing. *Sens. Actuators, B* **2014**, *194*, 389–396.

(45) Bie, L.-J.; Yan, X.-N.; Yin, J.; Duan, Y.-Q.; Yuan, Z.-H. Nanopillar ZnO Gas Sensor for Hydrogen and Ethanol. *Sens. Actuators, B* **200**7, *126*, 604–608.

(46) Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N. Gas Sensing Properties of Tin Oxide Thin Films Fabricated from Hydrothermally Treated Nanoparticles Dependence of CO and H<sub>2</sub> Response on Film Thickness. *Sens. Actuators, B* **2001**, *77*, 116–121.